Physics Goals and Reach of CLEO-C

March 26th, 2001
Laboratory of Nuclear Studies,
Cornell University
and the
CLEO Collaboration

Modify CESR for Operation at $E_{cm} = 3-5 \text{ GeV}$

- Luminosity = $1-4 \times 10^{32}$
- Run Plan
 - 3fb-1 at 3770 (DD production)
 - 3fb-1 at 4140 (D_sD_s production)
 - 1fb-1 at 3100 (J/ ψ production)

About one year each

- Physics Reach of the CLEO-C Program?
 - Data Samples
 - 30M Ψ" ==> ~6 Million tagged D decays

```
NEAX. 1.5M D_sD_s ==> \sim 0.3 Million <u>tagged</u> D_s >10^9 J/\Psi ==> billions of J/y's - UNIQUE - Samples are nearly background free
```

- What can the competition do?
 - Data Samples in 2004
 - BaBar/Belle ~200-400 fb⁻¹
 - » ~500M cc pairs
 - BESII
 - » 50M J/Ψ

Large data set Large backgrounds

Physics Program Part 1: Weak Interaction Physics

Physics Targets & Sensitivity

	CLEO-C	BaBar	Current	
	2-4fb-1	400 fb-1	Knowledge	
f_D Vcd	1.5-2%	*	n.a.	
f_Ds Vcs	<u>≤</u> 1%	5-10%	19%	
Br(D+ -> Kππ)	1.5%	3-5%	7%	
Br(Ds $\rightarrow \phi\pi$)	2-3%	5-10%	25%	
$Br(D->\pi l \nu)$	1.4%	3%	18%	
$Br(\Lambda c \rightarrow pK\pi)$	6 %	5-15%	26%	
A(CP)	~1%	~1%	3-9%	
x'(mix)	0.01	0.01	0.03	
		* Stil	* Still under study	
Statistics limited. Systematics & background				
		limited.		

Precision Charm Measurements and the CKM Program

The CKM Matrix:

Vud	Vus	Vub	
Vcd	Vcs	Vcb	
Vtd	Vts	Vtb	

How well do we know these elements from direct measurement (i.e., without imposing Unitarity)?

0.1%	1 %	25%	
7 %	16%	5 %	
36%	39%	29%	

Unitarity may be tested with any pair of rows or columns. Bfactories: first & last columns. CLEO-C: first two rows --

Thus a ~1% measurement of |Vcd| and |Vcs| will allow a check of Unitarity at the 1% level.

The Future of Lattice QCD (Peter Lepage)

Cornell Workshop on High Precision Lattice QCD, January 2001

- 1% accuracy for dozens of "gold-plated" calculations possible within 2-3 years:
 - Masses, decay constants, semileptonic form factors, and mixing amplitudes for D, D_s , D^* , D_s^* , B, B, B, and corresponding baryons.
 - Masses, leptonic widths, electromagnetic form factors, and mixing amplitudes for any meson in ψ and Y families below D and B threshold.
 - Masses, decay constants, electroweak form factors, charge radii, magnetic moments, and mixing angles for low-lying light-quark hadrons.
- Uses current (1985-1999) techniques; new types of data (e.g., glueballs) will drive development of new techniques.
- Progress driven by improved algorithms
 (theoretical physics), not improved hardware.

 Future pace will be much faster than pace of hardware evolution.

- One Example: f_{Ds} from $D_s \rightarrow \mu \nu$
 - B(D_s -> $\mu\nu$) DONE AT U(4S)
 - Search for $D_s^* \rightarrow D_s \gamma$, $D_s \rightarrow \mu \nu$
 - Depends on "neutrino reconstruction"
 - Backgrounds are LARGE!
 - Precision limited by systematics of background determination ~5-10%

CLEO signal 4.8fb⁻¹

Determination of f_{Ds} from OPAL (March 2001) $f_{Ds} = 286 \pm 44 \pm 41 \text{ MeV } (21\%)$

... And the same $D_s^{-}>\mu\nu$ done at threshold...

- Take advantage of threshold running
 - Tag D_s by full reconstruction (10% eff)
 - · Look opposite for single track
 - · Negligible background!
- Precision limited by statistics 1%

Summary of CLEO-c Probes of Weak Interaction Physics

- Precision measurements
 - Absolute charm BR's
 - Semi-Leptonic form factors
 - Stringent calibration/validation of LQCD
- Precision Decay Constants f_D, f_{Ds}
 - Extract Vcs, Vcd to ~1%
 - Precision test of Unitarity
 - Complete the CKM program
- S.L. Decays
- Searches for new physics
 - D mixing
 - CP Violation in D decay
 - Rare D decays

Probe essential nature of weak decays

Enabling

measurements for tests of

weak decays

Look for the unexpected

Low background environment --> and quantitative advantage

Physics Program Part 2

Low Energy QCD: Grappling with a Nonperturbative World

- Unambiguous predictions of QCD:
 - Glueballs G=|gg> & Hybrids H=|gqq>
 - Rich spectrum predicted; no definitive assignments to observed bumps
 - Essential verification of QCD to find evidence of these states
 - Essential test of our understanding of strongly coupled theory to calculate their spectra
- The most interesting, challenging, and unique part of QCD is not under control: nonperturbative physics
- Goal of CLEO-C QCD Program:
 - Determine composition for variety of exotica in 1.5-2.5 GeV mass range

The Challenge of Strongly Coupled Field Theories

Biggest challenge in theoretical physics

- Strongly coupled field theories are generic;
 weak-coupling is a special case.
- Many communities working on the issues
 - String theorists
 - Calculation of glue ball spectrum
 - Lattice gauge theorists
 - Only fundamental tool for dealing with SC

How does CLEO-C program fit it?

- QCD needs detailed, high quality data to drive it forward.
- Who cares?
 - Near term: B physics! We see hadrons, not quarks.
 - Long term: High energy frontier: strongly coupled sectors above 1 TeV
- Complete the last known sector of QCD (glueballs, hybrids) with precision data

Example: Search for "Glueballs"

- Strategy Part 1: $(1fb^{-1})$ on J/Ψ
 - Search for states in glue rich environment
 - B(J/Ψ -> γ X) ~ 6%

- Copious source of color singlet gg pairs
- $J^{PC} = 0^{++}, 0^{-+}, 2^{++}$
- Partial Wave Aanalysis to get Quantum
 Numbers of observed states
 - · Hermetic detector / Low background
- Strategy Part 2: Current 2γ Data 25fb⁻¹
 - Anti-search in glue-poor environment
 - Eg. $e^+e^- -> e^+e^-\gamma\gamma -> e^+e^-X$

- Strategy Part 3: 1fb⁻¹ on Y(15)
 - Compare $\Gamma(J/\Psi \rightarrow \chi X)$ and $\Gamma(Y(1S) \rightarrow \gamma X)$
 - Can confirm existence of states
 - · Probe details of wave functions
 - Test conclusions drawn from J/ Ψ & $\gamma\gamma$ data

Interaction with Lattice QCD (Cornell Workshop on High Precision Lattice QCD) (qpl)

ψ and Y Physics

- >30 gold-plated (1%) lattice calculations possible within next 2-3 years.
 - Masses, spin fine structure for S, P, D states.
 - · Leptonic widths for S-states.
 - Electromagnetic transition form factors for P->S states, S->P states
 - S-D mixing.
- Richest, most efficient calibration/ testing ground for lattice techniques.
 - Detailed verification of a major <u>new</u> theoretical technique (cf 1950's).
 - Essential for credibility/viability of high-precision
 B, D experiments at BaBar, CLEO ...
 - Calibrates many different techniques.
- Essential precursor to heavy-hybrid searches.

Current Status

- Experimental
 - Far from clear!
 - List of "glue ball" suspects
 - $\eta(1400)$ region
 - $f_0(1500)$
 - $f_J(1710)$
 - $\xi(2230)$
 - The situation is complicated and experimental results are contradictory
 - Sorting it out will be challenging!
 - Looks messy now due to <u>insufficient</u> statistics
- Theoretical
 - Lattice: Believable and increasingly precise

Example: the x(2230)

... But the existing measurements are murky...

No evidence in ppbar from LEAR (high statistics!):

Inconsistent reports from OPAL and L3 in 3-jet events:

Comparison with Other Expts

China:

BES II is running now.

BES II --> BES III upgrade

BEPC I --> BEPC II upgrade, ~10³² lumi.

being proposed

Physics after 2005 if approval & construction go ahead.

Quantity	BES II	CLEO-C
J/psi yield	50M	> 1000M
dE/dx res.	9%	4.9%
K/pi separation up to	600 MeV	1500 MeV
momentum res. (500Mev)	1.3%	0.5%
Photon resolution (100 Mev)	70 MeV	4 MeV
Photon resolution (1000 Mev)	220 MeV	21 MeV
Minimum Photon Energy	80 MeV	30 MeV
Solid angle for Tracking	80%	94%
Solid angle for Photons	75%	95%

HALL-D at TJNAL:

 γp to produce states with exotic Quantum Numbers Focus on light states with $J^{PC} = 0+-, 1+-, ...$

Complementary to CLEO-C focus on heavy states with $J^{PC} = 0++,\ 2++,\ ...$

Physics in 2007+?

Summary of CLEO-C Program

- Significant/Unique reach in weak physics
 - Precision measurements of decay constants and absolute Br: --> Precision CKM Unitarity tests.
 - Searches for new physics -> CPV, Dmix, rare D decays,...
 - Competes favorably with B-factories
 - Measurements both qualitatively and quantitatively better; in some cases x10 better
 - Complements and bolsters B-factory program
 - CKM tests, Charm BR, LQCD proving ground, HQET
- Significant/Unique reach in QCD
 - >20 times world's data sample
 - Modern detector with significantly better resolution and coverage than BES, MARKIII,...
 - Single experiment: 3-prong attack
 - Clean up problems that have been outstanding in low energy QCD for almost 20 years
 - Lay groundwork for understanding a strongly coupled world.

What about the collaboration?

 The present CLEO collaboration has voted overwhelmingly in favor of the CLEO-C project

116 yes,30 probable -- depending on funding9 reluctantly no -- due to retirements etc

- Important part of the Heavy quark/CKM program
- New opportunities in the QCD sector
- Natural fit with future plans (BTeV, LHC,...)
- Seeking new collaborators from the both high energy and medium energy community. Rich new spigot of data.

Workshop on Prospects for CLEO/CESR with 3 < Ecm < 5 GeV

May 5-6-7 (Sat-Mon) Cornell University

www.lns.cornell.edu/public/CLEO/CLEO-C

Measurements of charm meson branching fractions and decay constants D mixing Semileptonic charm decays Tau mass and other threshold measurements Branching fractions of Λ_c CP violation in D decays Rare decays of D and D $_s$ mesons QCD studies with 10 9 J/ ψ decays Searches for QCD hybrids and exotics Light meson spectroscopy Opportunities at the $\psi(2S)$ Measurements of R Physics opportunities in $\gamma\gamma$ collisions

Why CLEO? Why now?

- We have a first class detector vastly superior to what has been used by other experiments.
- We have a high luminosity machine capable of delivering 100x luminosity of existing machines in this $E_{\rm cm}$ range
- Lattice QCD primed to meet the challenge of precision measurements.
- We have an experienced and wellequipped collaboration ready to act.